

Report on Acid Sulfate Soil Management Plan

Proposed Multi-Level Aged Care Facility 45 Hillview Street, Woy Woy, NSW

> Prepared for Doug Sneddon Planning Pty Ltd

> > Project 83565.00 February 2019

Douglas Partners Geotechnics | Environment | Groundwater

Document History

Document details

Project No.	83565.00	Document No.	R.001.Rev1
Document title	Report on Acid Sulfate	Soil Management	Plan
	Proposed Multi-Level /	Aged Care Facility	
Site address	45 Hillview Street, Wo	y Woy, NSW	
Report prepared for	Doug Sneddon Planni	ng Pty Ltd	
File name	83565.00.R.001.Rev1		

Document status and review

Status	Prepared by	Reviewed by	Date issued
Revision 0	Jessica Paulsen	Brent Kerry	15 February 2019
Revision 1	Jessica Paulsen	Brent Kerry	21 February 2019

Distribution of copies

Status	Electronic	Paper	Issued to
Revision 0	1	0	Doug Sneddon, Doug Sneddon Planning Pty Ltd
Revision 0	1	1	Douglas Partners Archive
Revision 1	1	0	Doug Sneddon, Doug Sneddon Planning Pty Ltd
Revision 1	1	1	Douglas Partners Archive

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

	Signature	Date
Author	J	21 February 2019
Reviewer	Rhany-	21 February 2019

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au Unit 5, 3 Teamster Close Tuggerah NSW 2259 Phone (02) 4351 1422 Fax (02) 4351 1410

Table of Contents

Page

1.	Introd	uction	1
2.	Site D	escription and Information	1
3.	Resul	ts of Previous Investigations	2
4.	Propo	sed Development	3
5.	Acid S	Sulfate Management Plan	3
	5.1	Overview	3
	5.2	Risk Categorisation	4
	5.3	Excavation Procedure and Disposal / Reuse Options	4
	5.4	Liming Rates	4
	5.5	Soil Treatment and Neutralisation Rates	5
	5.6	Placement of a Guard Layer	6
	5.7	Neutralising Materials	6
	5.8	Dewatering	6
	5.9	Verification Testing	В
	5.10	Emergency Response Procedures (Contingency Plan)	9
	5.11	Reporting10	C
6.	Refer	ences10	0
7.	Limita	tions10	D

Appendix A:	About This Report
Appendix B:	Drawing 1 from DP Report 41561.01
	Development Plans
Appendix C:	Logs and Test Results from Previous Investigations

Report on Acid Sulfate Soil Management Plan Proposed Multi-Level Aged Care Facility 45 Hillview Street, Woy Woy, NSW

1. Introduction

This report presents an Acid Sulfate Soil Management Plan (ASSMP) for the excavation of acid sulfate soils in connection with the proposed multi-level aged care facility at 45 Hillview Street, Woy Woy. This assessment was undertaken with reference to the Douglas Partners Pty Ltd (DP)'s proposal CCT190033 dated 30 January 2019 and confirmation received from Doug Sneddon of Doug Sneddon Planning Pty Ltd on 4 February 2019.

It is understood that the proposed development will comprise construction of a three-storey building with one basement level for car parking, internal access roads and landscaping. The client indicated that the maximum depth of excavation is estimated to be 2.5 m below current surface level.

DP has previously prepared several reports for the site. The most recent report (DP, 2012) reviewed the acid sulfate soil test results from the previous reports and completed additional testing. Overall, the results indicated that acid sulfate soils were present at the site.

This ASSMP is required for development application (DA) purposes and is based on results from previous investigations. It is noted that the current DA (DA53784/2018) comprises a reduced area of excavation compared to the previous DA (DA30219/2006).

This management plan has been prepared with reference to the NSW Acid Sulfate Soil Management Advisory Committee: Acid Sulfate Soil Manual (Ref 1), The Soil Management Guidelines 2014 (Ref 2) and The Laboratory Methods Guidelines 2004 (Ref 3).

2. Site Description and Information

The site is located to the north-west of the intersection of Hillview Street and Veron Road, Woy Woy and comprises a roughly rectangular parcel of land of approximately 11,700 m². The site is bounded to the north by existing residential properties, to the east by Hillview Street, to the south by Veron Road and to the west by an existing drainage reserve.

At the time of the previous investigation (2012), the site had been partially cleared. Sand was exposed at the surface throughout the cleared area. The remainder of the site was covered by moderately thick vegetation comprising trees and shrubs. The topography at the site is essentially flat with surface levels ranging between 4.0 - 4.5 m AHD.

Reference to the Sydney 1:250 000 scale Geological Series Sheet indicates that the site is underlain by Quaternary Alluvium. Previous experience within the Woy Woy Peninsula suggests that the site

would be underlain by sand to an undefined depth. The previous geotechnical investigation (DP, 2007b) confirmed the geological mapping with sands encountered to depths greater than 12 m. Reference to the Soil Conservation Service of NSW acid sulfate soil risk map for Broken Bay indicates that the site is located within an area where there is a 'low probability' of acid sulfate soils at depths greater that 3 m below ground surface levels.

3. Results of Previous Investigations

DP previously prepared the following reports for the site:

- Report on Podzol Assessment, Corner of Hillview Street and Vernon Road, Woy Woy, prepared for Providence Projects Pty Ltd, dated August 2004 (DP Project No. 34986) (DP, 2004);
- Proposed Residential Development for The Aged, Hillview Street, Woy Woy, prepared for Cardno (NSW) Pty Ltd, dated November 2005 (DP Project No. 34986A) (DP, 2005);
- *Geotechnical Investigation, Proposed Gravity Sewer Main, Hillview Street, Woy Woy,* prepared for Providence Projects Pty Ltd, dated July 2007 (DP Project 41524) (DP, 2007a);
- Report on Geotechnical Investigation, Proposed Retirement Village, Everglades Retirement Gardens, Lot 17 in DP833218 Hillview Street, Woy Woy, prepared for Providence Projects Pty Ltd, dated December 2007 (DP Project 41561) (DP, 2007b); and
- Report on Geo-Environmental Assessment, Proposed Retirement Village, Lot 20 DP1123934, 45 Hillview Street, Woy Woy, prepared for Southern Cross Care (NSW & ACT), dated September 2012 (DP Project No. 41561.01) (DP, 2012).

The most recent report (DP, 2012) reviewed the acid sulfate soil results from the previous report (DP, 2007b) and then completed additional investigation, soil screening and laboratory analysis.

The ground conditions encountered in the previous investigations generally comprised grey and brown sand and silty sand to the depth of investigation (4 m). The only exception being a layer of filling which was encountered to a depth of 0.2 m in Bore 101 described as dark grey gravel filling (probably a gravel hardstand area).

Groundwater was observed at depths of between 1.7 m and 2.5 m in all bores during drilling. The stabilised groundwater was measured at depths of between 1.6 m and 2.0 m. It should be noted that groundwater levels at the site are likely to be influenced by the nearby creek and prevailing weather conditions and will therefore change over time.

It should be noted that, laboratory test methods and / or guidance documents have been updated since the acid sulfate soil investigations were completed in 2007 and 2012. An updated investigation may further refine acid sulfate conditions at the site. However, based on the information available, the following conclusions regarding acid sulfate soils are provided:

• The results of the sPOCAS and Scr testing indicated acid sulfate soil results were generally below the adopted action criteria; however, detectable concentrations of acidity and sulfidity were reported in soils within the proposed development area.

Soil samples from Bore 102 at 3.0 m depth and Bore 104 at 3.0 m depth exceeded the action criteria (i.e. net acidity action criteria of 0.03%S). It should be noted that these exceedances are consistent with the acid sulfate soil risk mapping, which identified that the site had a low probably of occurrence of acid sulfate soils below depths of approximately 3 m. Furthermore, the risk mapping notes that acid sulfate soil materials, if present, are sporadic and may be buried by alluvium...

On this basis, the results suggest that sporadic acid soils are present within the proposed basement excavation. In the absence of an updated comprehensive data set, a precautionary approach should be adopted, and all soils encountered below the groundwater table (i.e. approximately 1.5 m depth) should be considered to be acid sulfate soils and will require management.

Hence, the proposed works should be undertaken in accordance with a site-specific acid sulfate soil management plan (ASSMP) to appropriately minimise and manage the acid sulfate impacts.

4. **Proposed Development**

It is understood that the proposed development will comprise construction of a three-storey building with one basement level for car parking, internal access roads and landscaping. The client indicated that the maximum depth of excavation is estimated to be 2.5 m below current surface level.

Based on the previous geotechnical report (DP, 2007b), the most suitable support system for the sides of the proposed basement excavation would be either contiguous or secant pile walls. Temporary dewatering would also be required. A tanked basement was recommended to eliminate the requirement for permanent dewatering. It is also assumed that groundwater monitoring during construction would be required during dewatering.

5. Acid Sulfate Management Plan

5.1 Overview

As described in Section 3, two soil samples from Bores 102 and 104 at 3.0 m depth described as light brown or grey silty sand exceeded the action criteria.

Overall, deeper excavations (more than approximately 1.5 m below current surface level) may disturb sporadic or isolated areas of ASS that will require management for acid sulfate soil conditions. These soils are likely to comprise light brown or grey silty sand. It is estimated that approximately 5,000 to 10,000 tonnes of acid sulfate soils will be disturbed as part construction of the proposed nursing home facility (basement level and lift shafts).

Disturbance of acid sulfate soils must be managed to avoid the release of acidity into the environment. It is essential that the acid sulfate soils be managed to ensure that there is no impact to the surrounding environment, including the nearby vegetation conservation area.

5.2 Risk Categorisation

The SMG (Ref 2) relates environmental risk from ASS by the treatment level and tonnage of disturbance of ASS. This document indicates that the proposed disturbance of the natural soils below approximately 1.5 m depth is likely to be considered "Category VH" or very high level of treatment.

The SMG (Ref 2) confirms that a formal ASS Management Plan is required as part of the propose works, and that the following practices are to be included:

- Soils are treated with an amount of neutralising agent that will counter their existing plus potential acidity;
- The neutralising agent is thoroughly mixed with the soil; and
- Management of site run-on, runoff and infiltration.

5.3 Excavation Procedure and Disposal / Reuse Options

It is understood that spoil generated from excavation of the proposed basement and lift shafts may be transported off-site for reuse or disposed of to a licenced landfill in accordance with the waste classification provided in the previous report (DP, 2012). It is recommended that soils excavated be initially segregated into the following stockpiles:

- Filling: Dark grey sandy gravel filling encountered to a depth of 0.2 m in Bore 101. These soils do not require management for acid sulfate soil conditions and were classified as General Solid Waste (non-putrescible) in the previous report (DP, 2012).
- Natural: Soils to a depth of approximately 1.5 m identified as non-acid sulfate soils do not require management for acid sulfate soil conditions and were classified as VENM in the previous report (DP, 2012); and
- Natural: Soils below a depth of approximately 1.5 m identified as acid sulfate soils and require management for acid sulfate soil conditions, described as light brown or grey silty sand. These soils require treatment in accordance with this ASSMP for re-use on-site or disposal to a licensed facility. These soils were classified as General Solid Waste (non-putrescible) in the previous report (DP, 2012).

Any filling or natural soils different to those describe above and in the previous report should be segregated to stockpile on-site for further assessment.

5.4 Liming Rates

Based on the assessment results (DP, 2012), natural soils from approximately 1.5 m depth and described as light brown silty sand that are to be disturbed during excavation are to be treated using lime prior to re-use or disposal. Table 1 below provides indicative liming rates for neutralisation of the acid sulfate soils likely to be disturbed.

Table 1: Indicative liming rate

	Lighaat Nat Asidity	'Ag' Lime Applic Treatr	ation Rate for nent
Material	%S)	Guard Layers (kg/m ² of excavation)	Soil* (kg/t)
Natural light brown or grey silty sand below 1.5 m depth	0.07	1	3

* Based on Laboratory Report in previous DP report (DP, 2012)

Management of the excavation process will be necessary to identify and segregate the various material types and to ensure that the appropriate lime neutralisation treatment is applied to the corresponding material.

5.5 Soil Treatment and Neutralisation Rates

Neutralisation of PASS should be carried out as follows:

- Excavation, stockpiling and/or off-site transport of material identified as non-acid sulfate soil as described in Section 5.3. Stockpiling of soils should be managed in accordance with the contractors Construction Environmental Management Plan (CEMP); however, appropriate management of site run-on, runoff and infiltration should be incorporated into the plan.
- Once excavation has exposed the light brown or grey silty sand at approximately 1.5 m depth Grade 1 Agricultural Lime should be placed at a rate of 3 kg/tonne to the exposed soil.
- *In situ* mixing and stripping of approximately 200 mm layers should occur with more lime being added at the aforementioned rate with each subsequent excavated layer. *In situ* mixing and stripping off the soil in layers will allow the lime to thoroughly mix throughout the soil. Alternatively, mixing could occur on-site within a sealed vessel, such as skip bins, although ensuring thorough mixing is essential.
- Placement of a guard layer at a rate of approximately 1 kg/m² on the exposed excavation base and walls (where appropriate) to counteract the generation of acidic leachate due to the soils being exposed to air.
- If the soil is to be reinstated into on-site excavations, then the excavated PASS can be temporarily stockpiled on-site and covered with a layer of 'ag' lime to neutralise any possible leachate migrating from the stockpiled material and then covered by plastic sheeting.
- If off-site disposal is required the treated ASS should be loaded directly into trucks for transport to the appropriately licensed facility for disposal as per the waste classification (see Section 4.2).
- If on-site reuse is proposed, then the treated ASS should be reinstated beneath impermeable pavement (e.g. building slab or driveway) or it can be buried a minimum of 0.3 m below the final site levels. If no impermeable capping is placed, then the treated ASS must be capped with a minimum 0.3 m of non-acid sulfate soil materials (e.g. other non-acid sulfate excavation spoil).

5.6 Placement of a Guard Layer

Following completion of excavation activities, and where there are exposed PASS remaining in the work area (i.e. not below the water level) then a guard layer of agricultural lime should be placed at a rate of 1 kg/m^2 . This is to counteract the generation of acidic leachate due to the soils being exposed to air during the construction period.

5.7 Neutralising Materials

Agricultural lime ('ag' lime) should be used as the preferred neutralisation material for the management of ASS as it is usually the cheapest and most readily available product for soil neutralisation. This material is strongly alkaline (pH of 8.5 to 9.5), it is of low solubility, and does not present any handling problems. The 'ag' lime comprises calcium carbonate, typically made from limestone that has been finely ground and sieved to a fine powder.

The 'ag' lime purity should preferably be 95% or better, (i.e. NV >95, where NV is the neutralising value, a term used to rate the neutralising power of different forms of materials relative to pure, fine calcium carbonate which is designated NV = 100). 'Ag' lime is typically sold at an NV of 95% to 98%. There could be economic justification for using a less pure grade of ag lime; however, under these circumstances, the individual lime dosing rates should be increased by a factor of 100/NV.

Due to its low solubility in water, 'ag' lime is not suitable for the neutralisation of leachate, which requires a product with a very quick reaction and high solubility. The most suitable neutralising agent for leachate and retained drainage water is slaked lime or quicklime (calcium hydroxide). This is made by treating burnt lime (calcium oxide) with water (slaking) and comes as a fine white powder. It has a typical NV of about 135. Due to its very strong alkalinity (pH of about 12.5 to 13), slaked lime or quicklime should not be allowed to come into contact with the skin or be inhaled.

5.8 Dewatering

Stabilised groundwater was measured at depths of between 1.6 m and 2.0 m during previous investigations. As such, it is expected that groundwater would be encountered and require management during construction.

When groundwater is encountered during the construction works, then it should be managed using a water treatment system that enables management of water pH and turbidity levels. A number of propriety systems are available for use.

The following procedure is recommended in order to minimise potential adverse impacts resulting from excavation and dewatering of PASS during construction:

- Minimise the dewatering depth required for excavation;
- Minimise the time and volume of exposed PASS (i.e. staged dewatering and excavation over relatively short durations);
- Extracted groundwater should be discharged through a water treatment system that enables management of water pH and turbidity levels; and

• The pH of the extracted water should be monitored prior to discharge. Neutralisation should be undertaken if discharge water pH falls below natural groundwater levels or regulatory requirements.

The amount of neutraliser required to be added to the leachate or discharged groundwater can be calculated from the equation below:

Alkali Material Required (kg) = $M_{Alkali} \times 10^{-pH initial}$ Where:pH initial = initial pH of eǎdhateV = volume of leachate or collected water (litres) $M_{Alkali} = molecular$ weight of alkali material (g/mole)

Note: molecular weight of calcined magnesia (M_{MgO}) = 40 g/mole.

The alkali should be added to the leachate/discharged groundwater water as a slurry. Mixing of the slurry is best achieved using an agitator.

Whilst agricultural lime is well suited to the treatment of acid sulfate soils, it does not dissolve readily in water; hence it should not be used for adjusting the pH of water which requires a product with a very quick reaction and high solubility. The most suitable neutralising agent for leachate and retained water is slaked lime or quicklime (calcium hydroxide). This is made by treating burnt lime (calcium oxide) with water (slaking) and comes as a fine white powder. It has a typical NV of about 135.

Due to its very strong alkalinity (pH of about 12.5 to 13), slaked lime or quicklime should not be allowed to come into contact with the skin or be inhaled. Furthermore, it should be added incrementally with care and thoroughly mixed to prevent overshooting the desired pH.

As a guide, the approximate quantities of hydrated lime would be required to neutralise acidic water to pH 7 are provided in Table 2.

Matanall	Wa	ter Extraction F	Rate
water pH	2 m³/hr	5 m³/hr	10 m ³ /hr
2	0.74	1.85	3.7
3	0.074	0.185	0.37
4	0.0074	0.0185	0.037
5	0.00074	0.00185	0.0037
6	0.000074	0.000185	0.00037

 Table 2: Recommended Approximate Liming Rates for Water

Notes: Liming rates are for hydrated lime (kg of $Ca(OH)_2$)

It should be recognised that portable holding and treatment tanks will be required to allow on-site neutralisation of water generated by dewatering activities prior to on-site infiltration or discharge.

5.9 Verification Testing

Verification testing of the soil and any collected water to be disposed is required to be conducted after the addition of lime to test whether or not mixing has been adequate, and to reduce the risk of acidic water being returned to the environment.

Based on the intensity of testing during investigation, the net acidity of the soil prior to treatment and the quantity of soil to be treated, it is recommended that validation testing should comprise field pH screening and S_{CR} suite testing on at least five samples spread across the full depth of the proposed excavation.

The pH of all collected water around the confines of the managed stockpiles or during dewatering should be measured daily and results assessed against the criteria provided in Table 3. The soil and water contained within the bunded areas should not be removed until the target values presented in Table 3 below have been achieved.

Test	Component	Target Level
	рН	6.5 < pH < 8.5
	Turbidity	To comply with either values determined in consultation with the Authority (i.e. CCC) or less than local background levels (baseline monitoring required).
Monitoring of water	Aluminium (Al) and Iron (Fe)	Establish local water quality data prior to site disturbance and ensure that these values are not exceeded.
	Dissolved Oxygen	To comply with either values determined in consultation with the Authority (i.e. CCC) or less than local background levels (baseline monitoring required).
Field screening of soil	pH _F	5.5 < pH _F ≤ 8.5
Acid based accounting of	Net acidity (using appropriate fine factor)	Zero or negative
method)*	рН _{кс∟}	pH _{KCL} ≥ 6.5
	ТАА	Zero

Table 3: Target Levels of Neutralised Soil and Water

* Based on Section 3.6 of Chapter A (Overview) of the LMG (Ref 3)

It should be noted that chromium suite tests will require at least four days turnaround, possibly longer, and hence sufficient time should be allowed in the treatment programme for such verification testing. Only appropriately skilled staff, such as available through DP, should collect and test verification samples. In addition to normal daily supervision of the soil management process, it is suggested that regular formal inspections be undertaken.

5.10 Emergency Response Procedures (Contingency Plan)

Construction activities which may cause potential environmental threats are summarised in Table 4 below together with recommendations for "Emergency Response Procedures".

Construction Activity	Potential Environmental Threat	Emergency Response
Excavations	Flooding of open excavation causing adjacent groundwater levels to rise, leading to potential acid leachate once the excavation is drained	 Inform site foreman and project manager/ environmental officer; Determine pH of groundwater / floodwater in excavation; Correct groundwater / floodwater pH by application of slaked lime to bring pH in range of 6.5 to 8.5; Drain pit to tanks for water quality assessment prior to discharge.
Stockpiling / Neutralisation	Stockpile washes or slips outside of contained area	 Inform site foreman and project manager/ environmental officer; Estimate volume of material breeching bund; Conduct pH analysis of adjacent watercourses (if any); Remove breeched soil into a bunded limed pad; Over-excavate contaminated area to 0.2m depth, apply and mix lime at rate as for guard layers (1 kg lime per m² of surface).
	Breach in stockpile containment bund	 Inform site foreman and project manager/ environmental officer; Close breach in bund; Conduct pH analysis of adjacent watercourses (if any); Correct pH in any adjacent watercourse (if required).

Table 4: Emergency Response Procedures

For all construction activity incidents which pose an environmental threat, an incident report must be completed in order that:

- The cause of the incident may be determined; determine how the incident occurred;
- Additional control measures may be implemented; and
- Work procedures may be modified to reduce the likelihood of the incident re-occurring.

5.11 Reporting

A record of treatment of acid sulfate soils should be maintained by the contractor and should include the following details:

- date;
- location / area;
- time of excavation;
- neutralisation process undertaken;
- lime rate utilised;
- results of monitoring;
- disposal location; and
- tonnages and landfill dockets (if applicable).

A record should also be maintained confirming contingency measures and additional treatment if undertaken. A final report should be issued upon completion of the works presenting the monitoring regime and results, and confirming that adverse environmental impact has not occurred during the works.

6. References

- 1. Acid Sulfate Soil Manual, NSW Acid Sulfate Soil Management Advisory Committee (ASSMAC), August 1998
- Dear SW, Ahern CR, O'Brien LE, Dobos SK, McElnea AE, Moore NG and Watling KM Queensland Acid Sulfate Soil Technical Manual: *Soil Management Guidelines*. Department of Science, Information, Technology, Innovation and the Arts, Queensland Government, Version 4.0, 2014
- 3. Ahern CR, McElnea AE and Sullivan LA, *Acid Sulfate Soils Laboratory Methods Guidelines*, Department of Natural Resources, Mines and Energy, Indooroopilly, June 2004.

7. Limitations

Douglas Partners (DP) has prepared this ASSMP report for this project at 45 Hillview Road, Woy Woy with reference to DP's proposal CCT190033 dated 30 January 2019 and acceptance received from Doug Sneddon from Doug Sneddon Planning Pty Ltd dated 4 February 2019. The work was carried out under DP's Conditions of Engagement. This report is provided for the exclusive use of Doug Sneddon Planning Pty Ltd for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without

recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and / or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and / or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during previous investigations. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and / or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

The contents of this report do not constitute formal design components such as are required, by the Health and Safety Legislation and Regulations, to be included in a Safety Report specifying the hazards likely to be encountered during construction and the controls required to mitigate risk. This design process requires risk assessment to be undertaken, with such assessment being dependent upon factors relating to likelihood of occurrence and consequences of damage to property and to life. This, in turn, requires project data and analysis presently beyond the knowledge and project role respectively of DP. DP may be able, however, to assist the client in carrying out a risk assessment of potential hazards contained in the Comments section of this report, as an extension to the current scope of works, if so requested, and provided that suitable additional information is made available to DP. Any such risk assessment would, however, be necessarily restricted to the environmental components set out in this report and to their application by the project designers to project design, construction, maintenance and demolition.

Douglas Partners Pty Ltd

Appendix A

About This Report

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Appendix B

Drawing 1 from DP Report 41561.01

Development Plans

SCALE:

N/A

DATE:

Sept 2012

45 Hillview Street, Woy Woy

EVERGLADES GOLF COURSE MACKEN Site location PROJECT No: 41561.01 DRAWING No:

REVISION:

1 A

DEVELOPMENT APPLICATION '45 HILLVIEW STREET, WOY WOY' **PROPOSED MULTI - LEVEL NURSING HOME FACILITY**

Client: THOMPSON HEALTH CARE **MULTI-LEVEL NURSING HOME FACILITY 45 HILLVIEW STREET** WOY WOY, NSW

COVER SHEET / CONTENTS / **AERIAL PHOTOGRAPH**

Client: THOMPSON HEALTH CARE

View Looking North Along Hillview St from Veron Road

,198 β,

EXISTING CONCRETE FOOTPATH

Scale: 1:500 @ A1

EXISTING WOODLAND

¢ 51,152

Rev B - 07/08/17 - AMENDMENT S96 ISSUE

^{156.11m} **156.11m**)(4.76 + 2.86)(F+AMB)(3.76 + 2.766)()(2.766 + 1000)(1 PREVIOUSLY DA APPROVEI BOARDWALKS TO REMAIN UNALTERED PREVIOUSLY DA APPROVEI BOARDWALKS TO REMAIN UNALTERED

CAR ENTRY POINT

HILLVIEW + STREET MEDIUM USE ROAD

NOISE SOURCE

SITE BOUNDAR

156.11m

EXISTING CREEK

SITE BOUNDARY

tel 02 9262 4455 fax 02 9299 1524

fo@thrumarchitects.com.au

NSW Board of Architects: 95220

ww.thrumarchitects.com.au

EXISTING EVERGLADES COUNTRY CLUB

SITE PLAN 1:100 SCALE 1:500

Client: THOMPSON HEALTH CARE

Rev B - 07/08/17 - AMENDMENT S96 ISSUE

MULTI-LEVEL NURSING HOME FACILITY 45 HILLVIEW STREET WOY WOY, NSW

SITE PLAN / LOCALITY PLAN

@ A1

Wednesday, 3 October 2018

Thrum Architects Pty Limited Level 3, 80 Clarence Street Sydney NSW 2000 tel 02 9262 4455 16017 fax 02 9299 1524 fo@thrumarchitects.com.au

DA-002 rev D

ww.thrumarchitects.com.au

Scale: 1:100 @ A1

NSW Board of Architects: 95220

Client: THOMPSON HEALTH CARE

BASEMENT FLOOR PLAN - NORTH

Scale: 1:100 @ A1

SITE BOUNDARY

156.11m

SITE BOUNDARY

156.11m

DRTE CHERE OOF

	LOCATION	Typical Type Rooms	Twin Rooms	Accessible Rooms	1
1	GROUND - SOUTH	18			
2	GROUND - NORTH (DIMENTIA WING)	17	2	1	
3	LEVEL 1 - SOUTH	33	1	2	-
4	LEVEL 1 - NORTH	17	2	2	
5	LEVEL 2 - SOUTH	33	1	2	
6	LEVEL 2 - NORTH	17	2	2	_
	TOTALS	135	8	9	
	No. of Beds:	135	8x2= 16	9	16

NSW Board of Architects: 95220

DA-008 rev C

156.11m

Client: THOMPSON HEALTH CARE

45 HILLVIEW STREET WOY WOY, NSW

LEVEL 2 FLOOR PLAN - NORTH 16017 Wednesday, 3 October 2018 DA-010 rev C

Scale: 1:100 @ A1

the second second	4400
fax 02 9299	1524

o@thrumarchitects.com	.au
ww.thrumarchitects.com	.au

NSW Board of Architects: 95220

]	l (Π	Ш					Ш				П	1		
- · · ·	· · · · · · ·		- 11 -	·	·	·	· · _	₩	· ·	·	· ·	_			=
_ · · ·	· · · · · · ·				·	·	· · _	-	· ·	·	· ·				=
			лII				E								_
			내		·		· _ · C	₩₽					<u></u>		-
- · ·	; <u> </u>			·	· —			1.	· ·	· —	· ·			<u> </u>	=
- · ·			- 11 -	<u> </u>	· —	· —	· · _	₩	· ·	· —	· ·			·	=
_ · · ·			- 111 -	·	·	·	· ·	╨	· ·	·	· ·				_
															_
_ · · ·			- ii :		· —	· —	· · _		· ·	·	· ·		<u> </u>		=
- · ·	· ·		- ·	·	· —	· —	· · _		· ·	· —	· ·	_			=

ROOF PLAN - NORTH 16017 nfo@thrumarchitects.com.au www.thrumarchitects.com.au Wednesday, 3 October 2018 DA-012 rev C NSW Board of Architects: 95220

(NOT FOR CONSTRUCTION)

FACE BRICKWORK FACADE WALLS; DARK GREY

COLOUR BRICK SIMILAR TO "DARK BOWRAL

SANDSTONE VEENER STONEWORK WITH

SELECTED QUARRIED ROCK FACE FACING

BLUE" TYPE AS SELECTED

RL 16.450

SCALE 1:100

· —

PAINT FINISHED FETURE PAIRS TIMBER

GLAZED BALUSTRADES WITH POLISHED

7m x 3.6m x 1.6m

Client:

THOMPSON HEALTH CARE

RL 16.850

)F HIP TILE

2

POSTS ON SANDSTONE COLUMNS

STAINLESS STEEL POSTS AND RAIL

_ A/C LOUVRED PLANT ENCLOSURES,

FACE BRICKWORK FACADE WALLS; DARK GREY COLOUR

BAY WINDOW ELEMENTS

BRICK SIMILAR TO "DARK BOWRAL BLUE" TYPE AS SELECTED

PAINT FINISHED FETURE PROFILED FIBRE CEMENT CLADDING TO

MULTI-LEVEL NURSING HOME FACILITY 45 HILLVIEW STREET WOY WOY, NSW

EAST & NORTH ELEV

@ A1

Wednesday, 3 O

A/C LOUVRED PLANT ENCLOSURES, 7m x 3.6m x 1.6m SANDSTONE VEENER STONEWORK WITH SELECTED QUARRIED ROCK FACE FACING PAINT FINISHED FETURE PAIRS TIMBER POSTS ON SANDSTONE COLUMNS GLAZED BALUSTRADES WITH POLISHED STAINLESS STEEL POSTS AND RAIL	SMAILL SIZED ROLLED STEEL PFC FACIAS TO CANTILEVERING BAY WINDOW HOODS PAINT FINISHED FETURE PROFILED FIBRE CEMENT CLADDING TO BAY WINDOW ELEMENTS ALUMINIUM POWDER COATING FRAMED WINDOW JOINERY TO ALL WINDOWS, GLAZED WITH THERMAL PERFORMANCE GLAZING RL 16.450	

ALUMINIUM POWDER COATING FRAI WINDOWS, GLAZED WITH THER SMAILL SIZED ROLLED STEEL PFC FA	MED WINDOW JOINERY TO ALL RMAL PERFORMANCE GLAZING ACIAS TO CANTILEVERING BAY WINDOW HOODS	RL 16.	SELECTED QUARRIED ROCK FAG VC LOUVRED PLANT ENCLOSUF Im x 3.6m x 1.6m	CE FACING		PAINT FINISHE BAY WINDOW ALUMINIUM PO WINDOWS, GL

FACE BRICKWORK FACADE WALLS; DARK GREY COLOUR BRICK

SIMILAR TO "DARK BOWRAL BLUE" TYPE AS SELECTED

SANDSTONE VEENER STONEWORK WITH _

	CHARC	OAL GREY COLOURED TELLA -COTTA ROOF HIP TILE	SANDSTONE VEENER STONEWORK WITH SELECTED QUARRIED ROCK FACE FACING
FACE BRICKWORK FACADE WALLS; DARK GREY COLOUR BRICK SIMILAR TO "DARK BOWRAL BLUE" TYPE AS SELECTED SANDSTONE VEENER STONEWORK WITH SELECTED QUARRIED ROCK FACE FACING	ROLLE FACE BRICKWORK FACADE WALLS; DARK GREY COLOUR BRICK SIMILAR TO "DARK BOWRAL BLUE" TYPE AS SELECTED SANDSTONE VEENER STONEWORK WITH SELECTED QUARRIED ROCK FACE FACING	ED STEEL PFC FACIA, PAINT FINISHED 150 DIAMETER COLOUR BONED FINISHED EAVE GUTTERING 20°	FACE BRICKWORK FACADE WALLS; DARK GREY COLOUR BRICK SIMILAR TO "DARK BOWRAL BLUE" TYPE AS SELECTED
			CHARCOAL GREY CO TELLA -COTTA ROOF ROLLED STEEL PFC F 150 DIAMETER (FINISHED EAVE
		FINISH FETURE PAIRS TIMBER	

to western eleva	ation and waste roo	om (NOT FO
ATIONS	16017	Thrum Architects Pty Limited Level 3, 80 Clarence Street Sydney NSW 2000 tel 02 9262 4455 fax 02 9299 1524 info@thrumarchitects.com.au www.thrumarchitects.com.au
ctober 2018	DA-013 rev C	NSW Board of Architects: 95220 ABN 21 278 857 200 ACN 001 964 254

(NOT FOR CONSTRUCTION)

Rev C issued on 20/09/18 for modifications

FACE BRICKWORK FACADE WALLS; DARK GREY COLOUR BRICK SIMILAR TO "DARK BOWRAL BLUE" TYPE AS SELECTED

8.600

PAINT FINISHED FETURE PAIRS TIMBER

A/C LOUVRED PLANT ENCLOSURES,

[–] 7m x 3.6m x 1.6m

	SMAILL S PAINT F ALUMINI WIN	SIZED ROLLED STEEL PFC FA FINISHED FETURE PROFILED IUM POWDER COATING FRAM NDOWS, GLAZED WITH THER	CIAS TO CANTILEVERING BA WINDOW HOOD FIBRE CEMENT CLADDING T BAY WINDOW ELEMENT MED WINDOW JOINERY TO AI RMAL PERFORMANCE GLAZIN	AY DS TO TS LL IG	INCLINING FETU FACE BRICK SIM	ROLLED STEEL PFC FACIAS BE JRE CANTILEVERED EAVE SOF WORK FACADE WALLS; DARK MLAR TO "DARK BOWRAL BLUE	AMS, PAINT FINISHED FITS, PAINT FINISHED GREY COLOUR BRICK TYPE AS SELECTED	R	L 16.850 A/C L 7m x	LOUVRED PLANT ENCLOSURE 3.6m x 1.6m	5,	RL 16.450	IFT	SANDSTONE VEE SELECTED QUARF	ENER STONEWORK WITH RIED ROCK FACE FACING
LEVEL 2 - CEILING RL 15.050															
CEILING LEVEL															
GROUND RL 5.100															

RL 17.194

WEST ELEVATION - SOUTH

SANDSTONE VEENER STONEWORK WITH

SELECTED QUARRIED ROCK FACE FACING

_____ -

SCALE 1:100

· ___ · ___ · ___ ·

RL 16.850

20°

MULTI-LEVEL NURSING HOME FACILITY 45 HILLVIEW STREET WOY WOY, NSW

WEST & SOUTH ELEV

@ A1

Wednesday, 3

50	RL 17.1	194 20°	SMAILL SIZED ROLLED STEEL WINDOW HOODS PAINT FINISHED FETURE PROF BAY WINDOW ELEMENTS ALUMINIUM POWDER COATING WINDOWS, GLAZED WITH THE	PFC FACIAS TO CANTILEVERING BAY FILED FIBRE CEMENT CLADDING TO G FRAMED WINDOW JOINERY TO ALL RMAL PERFORMANCE GLAZING	RL 16.850	A/C LOUVRED PLANT ENCLOSUF 7m x 3.6m x 1.6m FACE BRICKWORK FACADE WALI SIMILAR TO "DARK BOWRAL BLU	:ES, LS; DARK GREY COLC E" TYPE AS SELECTEI

ROLLED STEEL PF INCLINING FETURE FACE BRICKWORK SIMILAR TO "DARK	C FACIAS BEAMS, PAINT FINISHED CANTILEVERED EAVE SOFFITS, PAINT FINISHED FACADE WALLS; DARK GREY COLOUR BRICK BOWRAL BLUE" TYPE AS SELECTED	RL 16.850	A/C LOUVRED PL	ANT ENCLOSURES,	

GF	ROUND L 5.100			
Rev C issu to western	ed on 20/09/18 for mod elevation and waste ro	lifications oom (NOT FOI	R CONSTRUCTIO	N
		Thrum Architects Pty Limited Level 3, 80 Clarence Street Sydney NSW 2000		
VATIONS	16017	tel 02 9262 4455 fax 02 9299 1524	5	
		info@thrumarchitects.com.au www.thrumarchitects.com.au		
October 2018	DA-014 rev C	NSW Board of Architects: 95220 ABN 21 278 857 200 ACN 001 964 254		
VATIONS October 2018	16017 DA-014 rev C	tel 02 9262 4455 fax 02 9299 1524 info@thrumarchitects.com.au www.thrumarchitects.com.au NSW Board of Architects: 95220 ABN 21 278 857 200 ACN 001 964 254	thru thru	

SMAILL SIZED ROLLED STEEL PFC FACIAS TO CANTILEVERING BAY

SCALE 1:100

Client: THOMPSON HEALTH CARE

SECTIONS AA & BB

@ A1

WEST RENDERED ELEVATION

Thrum Architects Pty Limited Level 3, 80 Clarence Street Sydney NSW 2000

tel 02 9262 4455 fax 02 9299 1524 fo@thrumarchitects.com.au

ww.thrumarchitects.com.au

NSW Board of Architects: 95220

DA-015 rev C

16017

A/C LOUVRED PLANT ENCLOSURES,	
7m x 3.6m x 1.6m	

THOMPSON HEALTH CARE

ENS 2.56 ENS ENS ENS 2.28	
ENS 1.56	
R LAUNDRY (DIRTY) COURTYARD G.32 ENS ENS G.27	
FEMALE STAFF AMENITIES MALE STAFF 	

_ A/C LOUVRED PLANT ENCLOSURES, 7m x 3.6m x 1.6m

ENS 2	2.34 2	.33	ENS			2.32	ENS	ENS	2.31			
ENS 1	.34 1	.33	ENS			.32	ENS	ENS	1.31			
ENS G	5.31 G	6.30	ENS	UNG	OFFICE	IN	TERVIEW ROOM	F	DYER		N LO	₽ U

A/C LOUVRED PLANT ENCLOSURES, 7m x 3.6m x 1.6m				ROLLED STEEL PFC FACIAS BEAMS, PAINT FINISHED													
				LOUNGE											 		-
				LOUNGE									· · _				
	SERVER			LOUNGE						cou	RTY	ARD					
	N	ORTH (CARPAF	RK													

MULTI-LEVEL NURSING HOME FACILITY 45 HILLVIEW STREET WOY WOY, NSW

SECTIONS CC & DD

Appendix C

Logs and Test Results from Previous Investigations

Screening Test Results Laboratory Results Sample Strength TPA TSA pН TAA Depth^a Sample Description Pit SPOS of pHox (moles (moles (moles pH_F pH_{KCL} pH_F (m) pH_{FOX} (%S) Reaction ^b H⁺/tonne) H⁺/tonne) pH_{FOX} H⁺/tonne) Grey SILTY SAND 4.2 2 0.2 2.8 1.4 ------0.7 Grey SAND 4.3 3.0 1.3 1 4.1 3.0 < 0.005 10 27 17 Grey SAND 2 1 1.3 4.2 3.1 1.1 ------1.8 Brown SAND 4.7 3.9 0.8 1 ------2.5 5.7 5.1 1 0.6 Yellow SAND ----_ -Grey SILTY SAND 2.6 1.4 1 0.1 4.0 ------Grey SAND 1 0.5 4.0 3.1 0.9 ------2 1.5 3.1 1 12 Dark grey SAND 4.1 1.0 3.8 0.019 263 275 2.6 Dark grey SAND 3.2 2 4.5 0.005 40 2.0 4.3 1.1 3.0 15 55 5.5 2 2.5 Yellow SAND 4.4 1.1 ------0.2 Brown SILTY SAND 5.0 3.4 1.6 1 ------Light yellow/grey 0.6 6.1 1.7 1 4.4 ------SAND Light yellow/grey 3 6.4 5.4 1.0 1 1.1 ------SAND Light yellow/grey 1.8 6.4 5.3 1.1 1 --_ _ _ -SAND 2.5 5.7 1 Yellow SAND 6.5 0.8 ------

Table 2 – Results of Screening Tests and Laboratory Test Results

Page 7 of 24

Screening Test Results Laboratory Results Sample TPA Strength TAA TSA Pit Depth^a Sample Description SPOS of (moles (moles (moles pН pH_{KCL} pHox (m) (%S) Reaction ^b H⁺/tonne) H⁺/tonne) H⁺/tonne) Dark brown SILTY 0.2 4.9 3.2 1.7 1 ---_ -SAND 2.0 2 0.5 Light grey SAND 5.2 3.2 5.7 3.7 0.007 <5 12 12 4 1.0 Light grey SAND 5.8 0.6 1 6.4 --_ _ --1.7 Yellow SAND 1 6.4 6.0 0.4 ----_ -2.4 Yellow SAND 5.5 4.3 1.2 1 ------18 18 18 Sands to loamy sands 0.03 ASSMAC Guideline Sandy loams to light (Ref. 1) Action 4 3.5 1 4 3 $0.06^{e}/0.03^{f}$ 36^e/18^f 36^e/18^f 36^e/18^f _ clays Criteria Values 62^e/18^f 62^e/18^f 62^e/18^f Medium to heavy clays 0.1^e/0.03^f

С

е

f

 Table 2 – Results of Screening Tests and Laboratory Test Results (con't)

Legend to Table 3:

a Depth below ground surface

b Strength of Reaction

1 denotes no or slight reaction

2 denotes moderate reaction

3 denotes violent reaction

F denotes bubbling/frothy reaction indicative of organics of material

C denotes colour change

H denotes heat change

O denoted odour

Bolded italicised results exceed the ASSMAC action criteria for disturbance of less than 1000 tonnes of material, based on the assumption that less than 1000 tonnes will be removed between each data point during the excavation of the trench.

For actual acid sulphate soils (AASS)

d Indicative value only for Potential Acid Sulphate Soils (PASS)

ASSMAC Action Criteria for disturbance of 1-1000 tonnes of material

ASSMAC Action Criteria for disturbance of more than 1000 tonnes

NT Not Tested

Page 8 of 24

SURFACE LEVEL: 4.015mAHD BORE No: 101 **SURFACE LEVEL**. **EASTING:** 342709.25 **NORTHING:** 6291503.1 DIP/AZIMUTH: 90°/--

PROJECT No: 41561.01 DATE: 19/7/2012 **SHEET** 1 OF 1

							_			
		a	Description	hic		San	npling a	& In Situ Testing	1	Well
	<u>ר</u> ן	eptn (m)	of	Loc	be	pth	ble	Results &	Nate	Construction
			Strata	G	Τ	De	San	Comments	-	Details
	_		FILLING: Dark grey, fine to medium angular gravel filling	\mathbb{X}	D	0.1		PID = 0.2 ppm		
	-	0.2	- became sandy below 0.05m with some rootlets, moist			0.1		<u></u>		
	-		SILTY SAND: Dark grey silty sand with some rootlets, damp		ł					Spoil - C So
	F				ł					
	F				D	0.5		PID = 0.8 ppm		
	Ī									
	[ł					Bentonite
	Ļ				1					
	-1				D	1.0		PID = 2.1 ppm		
	-				1					
	F				1					
	Ī				1					
					1					
	-		with light because been do forms 4.0as]					
	ł		- with light brown bands from 1.6m]					
	ł									
	Ì,	1.9	SILTY SAND: Light brown silty sand, damp			0.0			-	
						2.0		PID = 1.2 ppm	<u>₹</u>	
	-								3-07-1	
	-				l				100	
	-									
	-		- saturated from 2.5m		ļ				\geq	- Backfilled with
	F				ļ					
					ł					
	-				ł					
	-3				D	3.0		PID = 3.1 ppm		
	-			$\left \cdot \right \cdot \left \cdot \right $	ł					
	F				ł					
	ŀ			$\left[\cdot\right]\cdot\left[\cdot\right]$	ł					
	[35		$\cdot \cdot \cdot \cdot $						
	-	0.0	SILTY SAND: Light grey silty sand with some fine shell fragments saturated		ł					
	-									
	ł			[]	ł					
	t.			$\left[\cdot \left]\cdot \right]\cdot \right]$	- I					
	4	4.0	Bore discontinued at 4.0m. Limit of investigation	I	<u>—</u> 0—	-4.0		PID = 2.8 ppm		
	-									-
	-									-
	-									-
	F									-
	Į									
	ļ									
	ł									
L										

RIG: Dando Terrier

TYPE OF BORING: Auger

CLIENT:

PROJECT:

Southern Cross Care (NSW & ACT)

Geo-Environmental Assessment

LOCATION: 45 Hillview Street, Woy Woy

DRILLER: lan

LOGGED: TW

CASING:

WATER OBSERVATIONS: Free Groundwater Observed at 2.5m during drilling **REMARKS:**

ſ		SA	MPLING	3 & IN SITU TESTIN	G LEGE	ND			
	Α	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)			
	В	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)			
	BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test Is(50) (MP	a)		
	С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
	D	Disturbed sample	⊳	Water seep	S	Standard penetration test		/	
	E	Environmental sample	9 ₹	Water level	V	Shear vane (kPa)			G

SURFACE LEVEL: 3.446mAHD BORE No: 102 **EASTING:** 342684.86 **NORTHING:** 6291552.35 DIP/AZIMUTH: 90°/--

PROJECT No: 41561.01 DATE: 19/7/2012 SHEET 1 OF 1

Γ		Description	.cj		San	npling &	& In Situ Testing		Well
Я	Depth (m)	of Strata	Graph Log	Type	Depth	Sample	Results & Comments	Wate	Construction Details
	-	SILTY SAND: Dark brown silty sand with some rootlets, moist	· [· [·] ·	D	0.1		PID = 2.0 ppm		-
	- - - 0f		 	D	0.5		PID = 1.6 ppm		
	-	SILTY SAND: Light grey silty sand, moist							-
	- 1 - -			D	1.0		PID = 2.1 ppm		-1
	- - 1.5 -	SILTY SAND: Light brown silty sand, moist	• • • • • • • • • • • • •						
	- 2	- saturated from 1.8m		D	2.0		PID = 3.0 ppm	>	-2
	-		• • • • • • • •						-
	- - - - -3			D	3.0		PID = 1.9 ppm		-3
	- 3.3 	3 SILTY SAND: Light grey silty sand with some fine shell fragments, saturated	 						-
	- - -				10				
	-4 4.(- -	Bore discontinued at 4.0m. Limit of investigation		<u>—</u> 0—	-4.0-		ריייייייייייייייייייייייייייייייייייי		-
	-								
	-								

RIG: Dando Terrier

TYPE OF BORING: Auger

CLIENT:

PROJECT:

Southern Cross Care (NSW & ACT) Geo-Environmental Assessment

LOCATION: 45 Hillview Street, Woy Woy

DRILLER: lan

LOGGED: TW

CASING:

WATER OBSERVATIONS: Free Groundwater Observed at 1.8m during drilling **REMARKS:**

	SAM	PLIN	G & IN SITU TESTING	LEG	END		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
B	Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)		
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test Is(50) (MPa)	1.3	Nuninge Partnere
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	1	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	11	
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater
•							

SURFACE LEVEL: 3.438mAHD BORE No: 103 **EASTING:** 342681.84 **NORTHING:** 6291518.68 DIP/AZIMUTH: 90°/--

PROJECT No: 41561.01 DATE: 19/7/2012 SHEET 1 OF 1

Γ			Description	<u>.</u>		Sam	npling &	& In Situ Testing		Well
Я	Dep (m	oth า)	of	iraph Log	/be	spth	nple	Results &	Wate	Construction
			Strata	0	F.	ă	Sar	Comments		Details
	ł		SILTY SAND: Dark grey to black silty sand with rootlets, moist	l i i i i	D	0.1		PID = 2.0 ppm		
		0.2	SILTY SAND: Mottled grey brown silty sand with some	++++++ - - - -	1					Spoil -
	-		rootlets, moist							
	-			l-i-i-i	D	0.5		PID = 1.5 ppm		
	ļ	0.6	SILTY SAND: Light brown silty sand, moist	 	1					
	-			l-i-i-i						Bentonite
	_1					10		PID = 1.4 nnm		
	-					1.0		т ів – т. т ррпп		
	F									
	-									
	-									
]				₹ 	
	-		- saturated from 1.7m						23-07-	
						2.0				
	[2					2.0		PID = 1.9 ppm		
	-]					
	-									Backfilled with
	t	27								
	-	2.1	SILTY SAND: Light grey silty sand with fine shell fragments. saturated	· [· [·] ·]						
	-		······································							
	-3				D	3.0		PID = 2.3 ppm		
	-									
	Ē								
	[[·i·i·i						
	-				1					
	ļ									
	-									
	-4	4.0	Bore discontinued at 4.0m. Limit of investigation		-D	-4.0-		PID = 2.6 ppm		
	-									-
	ł									
	ļ									
	ł									-
	ŀ									
	-									-
L									1	

RIG: Dando Terrier TYPE OF BORING: Auger DRILLER: lan

LOGGED: TW

CASING:

WATER OBSERVATIONS: Free Groundwater Observed at 1.7m during drilling **REMARKS:**

	SAI	MPLIN	G & IN SITU TESTING	LEG	END		
	A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
	B Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)		
	BLK Block sample	U,	Tube sample (x mm dia.)	PL(E	D) Point load diametral test Is(50) (MPa)		1 Dollalae Partnere
	C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
	D Disturbed sample	⊳	Water seep	S	Standard penetration test		
	E Environmental sample	¥	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater
•							

CLIENT: PROJECT:

Southern Cross Care (NSW & ACT) Geo-Environmental Assessment LOCATION: 45 Hillview Street, Woy Woy

SURFACE LEVEL: 3.870mAHD BORE No: 104 **EASTING:** 342677.79 **NORTHING:** 6291471.11 **NORTHING:** 6291471.11 **DIP/AZIMUTH:** 90°/--

PROJECT No: 41561.01 DATE: 19/7/2012 SHEET 1 OF 1

Γ			Description	.ci		Sam	npling &	& In Situ Testing		Well
ā	De (epth m)	of	sraph Log	/pe	spth	nple	Results &	Wate	Construction
L			Strata	0	Ĥ	De	Sar	Comments		Details
	-		SILTY SAND: Dark grey black silty sand with some rootlets, moist		D	0.1		PID = 2.1 ppm		-
	Į	0.2	SILTY SAND: Grey silty sand, moist						
	Ļ									-
	ł				D	0.5		PID = 1.3 ppm		-
	ł									-
	ł			l i i i i						-
	Ī			0.00						
	[_1			$\left[\cdot \left[\cdot \right]\cdot\right]$	D	1.0		PID = 1.2 ppm		-1
	ŀ			· ! · ! · !	_			· · · · · · · · · · · · · · · · · · ·		-
	ł			l-l-l-l-						-
	F			<u> .</u>].j.j.						-
	Ī	15								-
	[1.5	SILTY SAND: Orange brown silty sand, damp	$ \cdot \cdot \cdot \cdot $						-
	ŀ									-
	ł									-
	ł		- saturated from 1.9m						\geq	-
	-2			$\left[\cdot \left[\cdot \right]\cdot\right]$	D	2.0		PID = 2.4 ppm		-2
	[· [· [·] ·						
	ŀ			l.i.i.i.						-
	ł	2.4	SILTY SAND: Mottled light brown silty sand saturated							-
	ł									-
	ł									-
	[
	ŀ									-
	- 3	2.95	SILTY SAND: Light grey silty sand with some fine shell		D	3.0		PID = 2.8 ppm		-3
	ł		fragments, saturated							-
	ł									-
	[
	Ļ									-
	ŀ			.i.i.i						-
	ł			[·i·i·i						-
	F									-
	4	40		· · · ·	_n_	40-		PID = 34 ppm		4
		4.0	Bore discontinued at 4.0m. Limit of investigation			4.0		1 ID = 0.4 ppm		-
	ł									-
	ł									-
	F									-
	[
1	ļ									
	ł									
1	ł									-
L			1							

RIG: Dando Terrier

TYPE OF BORING: Auger

CLIENT:

PROJECT:

Southern Cross Care (NSW & ACT) Geo-Environmental Assessment

LOCATION: 45 Hillview Street, Woy Woy

DRILLER: lan

LOGGED: TW

CASING:

WATER OBSERVATIONS: Free Groundwater Observed at 1.9m during drilling **REMARKS**:

ſ	SAN	IPLIN	G & IN SITU TESTING	LEG	END]		
	A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)			
	B Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)			Devenie Devie eve
	BLK Block sample	U,	Tube sample (x mm dia.)	PL(E	D) Point load diametral test Is(50) (MPa)		1.1	Vijolinjae Partnare
	C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
	D Disturbed sample	⊳	Water seep	S	Standard penetration test			
	E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics Environment Groundwater
•								

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

76498

41561.01, Hillview St Woy Woy

/

25/07/12

8 Soils, 2 Waters

25/07/12

Client: Douglas Partners Tuggerah Unit 5, 3 Teamster Close Tuggerah NSW 2259

Attention: Brent Kerry

Sample log in details:

Your Reference: No. of samples: Date samples received / completed instructions received

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 2/08/12
 / 2/08/12

 Date of Preliminary Report:
 Not issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Nick Sarlamis

Inorganics Supervisor

Rhian Morgan Reporting Supervisor

M. slauffeld

Matt Mansfield Approved Signatory

Envirolab Reference: 76 Revision No: R

76498 R 00

Approved Signatory

Jeremy Faircloth Chemist

Page 1 of 26

vTRH&BTEX in Soil				
Our Reference:	UNITS	76498-1	76498-7	76498-8
Your Reference		101	101	102
Depth		1.0	0.1	0.1
Date Sampled		19/07/2012	19/07/2012	19/07/2012
Type of sample		Soil	Soil	Soil
Date extracted	-	26/07/2012	26/07/2012	26/07/2012
Date analysed	-	26/07/2012	26/07/2012	26/07/2012
vTRHC6 - C9	mg/kg	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	115	104	111

Client Reference: 41561.01, Hillvie

41561.0	01, Hillview	St Woy Woy
---------	--------------	------------

sTRH in Soil (C10-C36)				
Our Reference:	UNITS	76498-1	76498-7	76498-8
Your Reference		101	101	102
Depth		1.0	0.1	0.1
Date Sampled		19/07/2012	19/07/2012	19/07/2012
Type of sample		Soil	Soil	Soil
 Date extracted	_	26/07/2012	26/07/2012	26/07/2012
Date childeled		20/01/2012	20/01/2012	20/01/2012
Date analysed	-	26/07/2012	26/07/2012	26/07/2012
TRHC 10 - C14	mg/kg	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100
TRHC ₂₉ - C ₃₆	mg/kg	<100	<100	<100
Surrogate o-Terphenyl	%	83	89	87

PAHs in Soil				
Our Reference:	UNITS	76498-1	76498-7	76498-8
Your Reference		101	101	102
Depth		1.0	0.1	0.1
Date Sampled		19/07/2012	19/07/2012	19/07/2012
Type of sample		Soil	Soil	Soil
Date extracted	-	26/07/2012	26/07/2012	26/07/2012
Date analysed	-	26/07/2012	26/07/2012	26/07/2012
Naphthalene	mg/kg	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	97	98	95

Organochlorine Pesticides in soil				
Our Reference:	UNITS	76498-1	76498-7	76498-8
Your Reference		101	101	102
Depth		1.0	0.1	0.1
Date Sampled		19/07/2012	19/07/2012	19/07/2012
Type of sample		Soil	Soil	Soil
Date extracted	-	26/07/2012	26/07/2012	26/07/2012
Date analysed	-	26/07/2012	26/07/2012	26/07/2012
НСВ	mg/kg	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1
Surrogate TCLMX	%	87	92	92

PCBs in Soil				
Our Reference:	UNITS	76498-1	76498-7	76498-8
Your Reference		101	101	102
Depth		1.0	0.1	0.1
Date Sampled		19/07/2012	19/07/2012	19/07/2012
Type of sample		Soil	Soil	Soil
Date extracted	-	26/07/2012	26/07/2012	26/07/2012
Date analysed	-	26/07/2012	26/07/2012	26/07/2012
Arochlor 1016	mg/kg	<0.1	<0.1	<0.1
Arochlor 1221	mg/kg	<0.1	<0.1	<0.1
Arochlor 1232	mg/kg	<0.1	<0.1	<0.1
Arochlor 1242	mg/kg	<0.1	<0.1	<0.1
Arochlor 1248	mg/kg	<0.1	<0.1	<0.1
Arochlor 1254	mg/kg	<0.1	<0.1	<0.1
Arochlor 1260	mg/kg	<0.1	<0.1	<0.1
Surrogate TCLMX	%	87	92	92

Acid Extractable metals in soil				
Our Reference:	UNITS	76498-1	76498-7	76498-8
Your Reference		101	101	102
Depth		1.0	0.1	0.1
Date Sampled		19/07/2012	19/07/2012	19/07/2012
Type of sample		Soil	Soil	Soil
Date digested	-	26/07/2012	26/07/2012	26/07/2012
Date analysed	-	26/07/2012	26/07/2012	26/07/2012
Arsenic	mg/kg	<4	<4	<4
Cadmium	mg/kg	<0.5	<0.5	<0.5
Chromium	mg/kg	<1	13	3
Copper	mg/kg	<1	10	2
Lead	mg/kg	<1	3	5
Mercury	mg/kg	<0.1	<0.1	<0.1
Nickel	mg/kg	<1	14	1
Zinc	mg/kg	<1	17	11

Moisture				
Our Reference:	UNITS	76498-1	76498-7	76498-8
Your Reference		101	101	102
Depth		1.0	0.1	0.1
Date Sampled		19/07/2012	19/07/2012	19/07/2012
Type of sample		Soil	Soil	Soil
Date prepared	-	26/07/2012	26/07/2012	26/07/2012
Date analysed	-	27/07/2012	27/07/2012	27/07/2012
Moisture	%	5.5	4.2	7.9

Asbestos ID - soils				
Our Reference:	UNITS	76498-1	76498-7	76498-8
Your Reference		101	101	102
Depth		1.0	0.1	0.1
Date Sampled		19/07/2012	19/07/2012	19/07/2012
Type of sample		Soil	Soil	Soil
Date analysed	-	31/07/2012	31/07/2012	31/07/2012
Sample mass tested	g	Approx 40g	Approx 40g	Approx 40g
Sample Description	-	Brown	Brown	Brown
		coarse-	coarse-	coarse-
		grained	grained	grained
		sandy soil	sandy soil &	sandy soil
			rocks	
Asbestos ID in soil	-	No asbestos	No asbestos	No asbestos
		detected at	detected at	detected at
		reporting limit	reportinglimit	reporting limit
		of U.1g/kg	of U.1g/kg	of U.1g/kg
Trace Analysis	-	No respirable	No respirable	No respirable
		fibres	fibres	fibres
		detected	detected	detected

		1	1			
sPOCAS		76409.4	76409.0	76409.2	76409.4	76409 5
Your Reference	01113	101	102	102	104	104
Depth		1.0	0.5	3.0	0.5	1.0
Date Sampled		19/07/2012	19/07/2012	19/07/2012	19/07/2012	19/07/2012
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	26/07/2012	26/07/2012	26/07/2012	26/07/2012	26/07/2012
Date analysed	-	26/07/2012	26/07/2012	26/07/2012	26/07/2012	26/07/2012
рН ка	pH units	4.0	5.4	5.1	4.0	4.3
TAA pH 6.5	moles H ⁺ /t	15	<5	<5	12	5
s-TAA pH 6.5	%w/w S	0.02	<0.01	<0.01	0.02	<0.01
pH ox	pH units	3.0	3.5	3.0	3.0	3.5
TPApH6.5	moles H ⁺ /t	72	100	40	65	35
s-TPA pH 6.5	%w/w S	0.12	0.16	0.06	0.10	0.06
TSA pH 6.5	moles H ⁺ /t	57	100	37	52	30
s-TSA pH 6.5	%w/w S	0.09	0.16	0.06	0.08	0.05
ANCE	%CaCO3	<0.05	<0.05	<0.05	<0.05	<0.05
a-ANCE	moles H ⁺ /t	<5	<5	<5	<5	<5
s-ANCe	%w/w S	<0.05	<0.05	<0.05	<0.05	<0.05
SKCI	%w/w S	<0.005	<0.005	0.006	<0.005	<0.005
SP	%w/w	<0.005	0.01	0.07	<0.005	<0.005
Spos	%w/w	<0.005	0.01	0.06	<0.005	<0.005
a-Spos	moles H ⁺ /t	<5	8	41	<5	<5
Саксі	%w/w	<0.005	0.06	0.006	<0.005	<0.005
Сар	%w/w	<0.005	0.07	0.009	<0.005	<0.005
СаА	%w/w	<0.005	0.009	<0.005	<0.005	<0.005
Мдксі	%w/w	<0.005	<0.005	<0.005	<0.005	<0.005
MgP	%w/w	<0.005	<0.005	<0.005	<0.005	<0.005
MgA	%w/w	<0.005	<0.005	<0.005	<0.005	<0.005
Sнсı	%w/w S	<0.005	[NT]	[NT]	<0.005	<0.005
Snas	%w/w S	<0.005	[NT]	[NT]	<0.005	<0.005
a-Snas	moles H ⁺ /t	<5	[NT]	[NT]	<5	<5
s-Snas	%w/w S	<0.01	[NT]	[NT]	<0.01	<0.01
Fineness Factor	-	1.5	1.5	1.5	1.5	1.5
a-Net Acidity	moles H ⁺ /t	16	11	43	13	<10
Liming rate	kg CaCO3/t	1.2	0.81	3.2	0.97	<0.75
a-Net Acidity without ANCE	moles H ⁺ /t	NA	NA	NA	NA	NA
Liming rate without ANCE	kg CaCO3/t	NA	NA	NA	NA	NA

sPOCAS		
Our Reference:	UNITS	76498-6
Your Reference		104
Depth		3.0
Date Sampled		19/07/2012
		5011
Date prepared	-	26/07/2012
Date analysed	-	26/07/2012
рН ка	pH units	5.1
TAA pH 6.5	moles H ⁺ /t	5
s-TAA pH 6.5	%w/w S	<0.01
pH ox	pH units	3.6
TPApH6.5	moles H ⁺ /t	35
s-TPA pH 6.5	%w/w S	0.06
TSA pH 6.5	moles H ⁺ /t	30
s-TSA pH 6.5	%w/w S	0.05
ANCE	%CaCO3	<0.05
a-ANCE	moles H ⁺ /t	<5
s-ANCe	%w/w S	<0.05
Skci	%w/w S	<0.005
Sp	%w/w	0.03
Spos	%w/w	0.02
a-Spos	moles H ⁺ /t	15
Сакси	%w/w	0.007
Сар	%w/w	0.007
CaA	%w/w	<0.005
Мдксі	%w/w	<0.005
Мgр	%w/w	<0.005
MgA	%w/w	<0.005
Fineness Factor	-	1.5
a-Net Acidity	moles H ⁺ /t	20
Liming rate	kg CaCO3/t	1.5
a-Net Acidity without ANCE	moles H ⁺ /t	NA
Liming rate without ANCE	kg CaCO3/t	NA

vTRH & BTEX in Water			
Our Reference:	UNITS	76498-9	76498-10
Your Reference		101W	103W
Depth		-	-
Date Sampled		23/07/2012	23/07/2012
Type of sample		Water	Water
Date extracted	-	25/07/2012	25/07/2012
Date analysed	-	25/07/2012	25/07/2012
TRHC6 - C9	µg/L	<10	<10
Benzene	µg/L	<1	<1
Toluene	µg/L	<1	<1
Ethylbenzene	µg/L	<1	<1
m+p-xylene	µg/L	<2	<2
o-xylene	µg/L	<1	<1
Surrogate Dibromofluoromethane	%	109	107
Surrogate toluene-d8	%	100	100
Surrogate 4-BFB	%	93	91

sTRH in Water (C10-C36)			
Our Reference:	UNITS	76498-9	76498-10
Your Reference		101W	103W
Depth		-	-
Date Sampled		23/07/2012	23/07/2012
Type of sample		Water	Water
Date extracted	-	26/07/2012	26/07/2012
Date analysed	-	26/07/2012	26/07/2012
TRHC 10 - C 14	µg/L	<50	<50
TRHC 15 - C28	µg/L	<100	<100
TRHC29 - C36	µg/L	<100	<100
Surrogate o-Terphenyl	%	87	92

PAHs in Water			
Our Reference:	UNITS	76498-9	76498-10
Your Reference		101W	103W
Depth		-	-
Date Sampled		23/07/2012	23/07/2012
Type of sample		Water	Water
Date extracted	-	26/07/2012	26/07/2012
Date analysed	-	26/07/2012	26/07/2012
Naphthalene	µg/L	<1	<1
Acenaphthylene	µg/L	<1	<1
Acenaphthene	µg/L	<1	<1
Fluorene	µg/L	<1	<1
Phenanthrene	µg/L	<1	<1
Anthracene	µg/L	<1	<1
Fluoranthene	µg/L	<1	<1
Pyrene	µg/L	<1	<1
Benzo(a)anthracene	µg/L	<1	<1
Chrysene	µg/L	<1	<1
Benzo(b+k)fluoranthene	µg/L	<2	<2
Benzo(a)pyrene	µg/L	<1	<1
Indeno(1,2,3-c,d)pyrene	µg/L	<1	<1
Dibenzo(a,h)anthracene	µg/L	<1	<1
Benzo(g,h,i)perylene	µg/L	<1	<1
Surrogate p-Terphenyl-d14	%	107	99

HM in water - dissolved			
Our Reference:	UNITS	76498-9	76498-10
Your Reference		101W	103W
Depth		-	-
Date Sampled		23/07/2012	23/07/2012
Type of sample		Water	Water
Date prepared	-	26/07/2012	26/07/2012
Date analysed	-	27/07/2012	27/07/2012
Arsenic-Dissolved	μg/L	15	16
Cadmium-Dissolved	μg/L	<0.1	<0.1
Chromium-Dissolved	µg/L	3	4
Copper-Dissolved	µg/L	<1	<1
Lead-Dissolved	µg/L	<1	<1
Mercury-Dissolved	µg/L	<0.050	<0.050
Nickel-Dissolved	µg/L	<1	<1
Zinc-Dissolved	µg/L	5	6
Aluminium-Dissolved	µg/L	580	520
Cobalt-Dissolved	µg/L	<1	<1

Total Phenolics in Water			
Our Reference:	UNITS	76498-9	76498-10
Your Reference		101W	103W
Depth		-	-
Date Sampled		23/07/2012	23/07/2012
Type of sample		Water	Water
Date extracted	-	26/07/2012	26/07/2012
Date analysed	-	26/07/2012	26/07/2012
Total Phenolics (as Phenol)	mg/L	<0.05	<0.05

Miscellaneous Inorganics			
Our Reference:	UNITS	76498-9	76498-10
Your Reference		101W	103W
Depth		-	-
Date Sampled		23/07/2012	23/07/2012
Type of sample		Water	Water
Date prepared	-	26/07/2012	26/07/2012
Date analysed	-	26/07/2012	26/07/2012
рН	pH Units	7.1	7.1
Total Suspended Solids @ 103- 105 ⁰ C	mg/L	33	52
Total Dissolved Solids (grav)	mg/L	380	330

MethodID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105 deg C for a minimum of 4 hours.
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-064	sPOCAS determined using titrimetric and ICP-AES techniques. Based on Acid Sulfate Soils Laboratory Methods Guidelines, Version 2.1 - June 2004.
Metals-022 ICP-MS	Determination of various metals by ICP-MS.
Inorg-030	Total Phenolics - determined colorimetrically following disitillation, based upon APHA 21st ED 5530 D.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA 21st ED, 4500-H+.
Inorg-019	Suspended Solids - determined gravimetrcially by filtration of the sample, in accordance with APHA 21st ED, 2540-D.
Inorg-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at 180+/-5oC.

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
					Sm#			Recovery
vTRH&BTEX in Soil						Base II Duplicate II % RPD		
Date extracted	-			26/07/2 012	[NT]	[NT]	LCS-1	26/07/2012
Date analysed	-			26/07/2 012	[NT]	[NT]	LCS-1	26/07/2012
vTRHC6 - C9	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-1	100%
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]	[NT]	LCS-1	107%
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]	[NT]	LCS-1	99%
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-1	96%
m+p-xylene	mg/kg	2	Org-016	~2	[NT]	[NT]	LCS-1	98%
o-Xylene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-1	99%
<i>Surrogate</i> aaa- Trifluorotoluene	%		Org-016	104	[NT]	[NT]	LCS-1	103%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
sTRH in Soil (C10-C36)					Sm#	Base II Duplicate II % RPD		Recovery
				00/07/0			100.4	20/07/2012
Date extracted	-			26/07/2 012	נואון	[[N]]	LCS-1	26/07/2012
Date analysed	-			26/07/2 012	[NT]	[NT]	LCS-1	26/07/2012
TRHC 10 - C 14	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-1	124%
TRHC 15 - C28	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-1	140%
TRHC29 - C36	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-1	117%
Surrogate o-Terphenyl	%		Org-003	89	[NT]	[NT]	LCS-1	110%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II % RPD		
Date extracted	-			26/07/2 012	[NT]	[NT]	LCS-1	26/07/2012
Date analysed	-			26/07/2 012	[NT]	[NT]	LCS-1	26/07/2012
Naphthalene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-1	111%
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Fluorene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-1	101%
Phenanthrene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-1	100%
Anthracene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-1	111%
Pyrene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-1	108%
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Chrysene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-1	106%

Client Reference: 41561.01, Hillview St Woy Woy													
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery					
PAHs in Soil						Base II Duplicate II % RPD							
Benzo(b+k)fluoranthene	mg/kg	0.2	Org-012 subset	<0.2	[NT]	[NT]	[NR]	[NR]					
Benzo(a)pyrene	mg/kg	0.05	Org-012 subset	<0.05	[NT]	[NT]	LCS-1	114%					
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]					
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]					
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]					
<i>Surrogate p-</i> Terphenyl- d ₁₄	%		Org-012 subset	105	[NT]	[NT]	LCS-1	100%					
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %					
Organochlorine Pesticides in soil					Silm	Base II Duplicate II % RPD		Recovery					
Date extracted	-			26/07/2 012	[NT]	[NT]	LCS-2	26/07/2012					
Date analysed	-			26/07/2 012	[NT]	[NT]	LCS-2	26/07/2012					
НСВ	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]					
alpha-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-2	105%					
gamma-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]					
beta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-2	98%					
Heptachlor	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-2	102%					
delta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]					
Aldrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-2	99%					
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-2	107%					
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]					
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]					
Endosulfan I	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]					
pp-DDE	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-2	96%					
Dieldrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-2	107%					
Endrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-2	99%					
pp-DDD	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-2	101%					
Endosulfan II	mg/kg	0.1	Org-005	<0.1	[NT]	INTI	[NR]	[NR]					
pp-DDT	ma/ka	0.1	Ora-005	<0.1	INTI	INTI	INR1	[NR]					
Endrin Aldehvde	ma/ka	0.1	Ora-005	<0.1	INTI	INTI	INRI	INR]					
Endosulfan Sulphate	ma/ka	0.1	Org-005	<0.1	INTI		LCS-2	107%					
Methoxychlor	ma/ka	0.1	Org-005	<0.1	INTI		[NR]	[NR]					
Surrogate TCLMX	%		Org-005	92	[NT]	[NT]	LCS-2	87%					

Client Reference: 41561.01, Hillview St Woy Woy											
QUALITY CONTROL PCBs in Soil	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery			
Date extracted	-			26/07/2 012	[NT]	[NT]	LCS-2	26/07/2012			
Date analysed	-			26/07/2 012	[NT]	[NT]	LCS-2	26/07/2012			
Arochlor 1016	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]			
Arochlor 1221	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]			
Arochlor 1232	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]			
Arochlor 1242	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]			
Arochlor 1248	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]			
Arochlor 1254	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	LCS-2	102%			
Arochlor 1260	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]			
Surrogate TCLMX	%		Org-006	92	[NT]	[NT]	LCS-2	91%			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery			
Acid Extractable metals in soil						Base II Duplicate II % RPD					
Date digested	-			26/07/2 012	[NT]	[NT]	LCS-2	26/07/2012			
Date analysed	-			26/07/2 012	[NT]	[NT]	LCS-2	26/07/2012			
Arsenic	mg/kg	4	Metals-020 ICP-AES	<4	[NT]	[NT]	LCS-2	98%			
Cadmium	mg/kg	0.5	Metals-020 ICP-AES	<0.5	[NT]	[NT]	LCS-2	104%			
Chromium	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-2	101%			
Copper	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-2	101%			
Lead	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-2	99%			
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	[NT]	[NT]	LCS-2	99%			
Nickel	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-2	102%			
Zinc	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-2	102%			

41561.01, Hillview St Woy Woy

QUALITY CONTROL	UNITS	PQL	METHOD	Blank				
Moisture								
Date prepared	-			[NT]	-			
Date analysed	-			[NT]				
Moisture	%	0.1	Inorg-008	[NT]				
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	-			
Asbestos ID - soils								
Date analysed	-			[NT]	-			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
					Sm#			Recovery
sPOCAS						Base II Duplicate II % RPD		
Date prepared	-			26/07/2	[NT]	[NT]	LCS	27/07/2012
				012				
Date analysed	-			26/07/2	[NT]	[NT]	LCS	27/07/2012
	nH unite		Inora-064		INITI	INTI	105	100%
рп ка ТАА рН 6 5	moles	5	Inorg-064	[N]				97%
TAA pirto.5	H ⁺ /t	5	morg-004	3	[INT]	[N]	100	97 /6
s-TAA pH 6.5	%w/w S	0.01	Inorg-064	<0.01	[NT]	[NT]	[NR]	[NR]
pH ox	pH units		Inorg-064	[NT]	[NT]	[NT]	LCS	93%
TPApH6.5	moles	5	Inorg-064	<5	[NT]	[NT]	LCS	109%
	H ⁺ /t							
s-TPA pH 6.5	%w/w S	0.01	Inorg-064	<0.01	[NT]	[NT]	[NR]	[NR]
TSA pH 6.5	moles H⁺/t	5	Inorg-064	⊲5	[NT]	[NT]	LCS	109%
s-TSA pH 6.5	%w/w S	0.01	Inorg-064	<0.01	[NT]	[NT]	[NR]	[NR]
ANCE	% CaCO3	0.05	Inorg-064	<0.05	[NT]	[NT]	[NR]	[NR]
a-ANCE	moles H⁺/t	5	Inorg-064	-5	[NT]	[NT]	[NR]	[NR]
s-ANCe	%w/w S	0.05	Inorg-064	<0.05	[NT]	[NT]	[NR]	[NR]
Skci	%w/w S	0.005	Inorg-064	<0.005	[NT]	[NT]	LCS	86%
Sp	%w/w	0.005	Inorg-064	<0.005	[NT]	[NT]	LCS	95%
Spos	%w/w	0.005	Inorg-064	<0.005	[NT]	[NT]	LCS	99%
a-Spos	moles H⁺/t	5	Inorg-064	-45	[NT]	[NT]	LCS	100%
Саксі	%w/w	0.005	Inorg-064	<0.005	[NT]	[NT]	LCS	91%
Сар	%w/w	0.005	Inorg-064	<0.005	[NT]	[NT]	[NR]	[NR]
Сад	%w/w	0.005	Inorg-064	<0.005	[NT]	[NT]	[NR]	[NR]
Мдксі	%w/w	0.005	Inorg-064	<0.005	[NT]	[NT]	LCS	89%
Мgр	%w/w	0.005	Inorg-064	<0.005	[NT]	[NT]	[NR]	[NR]
MgA	%w/w	0.005	Inorg-064	<0.005	[NT]	[NT]	[NR]	[NR]
Sнсі	%w/w S	0.005	Inorg-064	<0.005	[NT]	[NT]	[NR]	[NR]
Snas	%w/w S	0.005	Inorg-064	<0.005	[NT]	[NT]	[NR]	[NR]

Envirolab Reference: 76498 Revision No: R 00

Client Reference: 41561.01, Hillview St Woy Woy												
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery				
sPOCAS						Base II Duplicate II % RPD						
a-Snas	moles H ⁺ /t	5	Inorg-064	45	[NT]	[NT]	[NR]	[NR]				
s-Snas	%w/w S	0.01	Inorg-064	<0.01	[NT]	[NT]	[NR]	[NR]				
Fineness Factor	-	1.5	Inorg-064	<1.5	[NT]	[NT]	[NR]	[NR]				
a-Net Acidity	moles H⁺/t	10	Inorg-064	<10	[NT]	[NT]	LCS	100%				
Liming rate	kg CaCO3 /t	0.75	Inorg-064	<0.75	[NT]	[T/J]	LCS	99%				
a-Net Acidity without ANCE	moles H ⁺ /t	10	Inorg-064	<10	[NT]	[TN]	[NR]	[NR]				
Liming rate without ANCE	kg CaCO3 /t	0.75	Inorg-064	<0.75	[NT]	[דא]	[NR]	[NR]				
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery				
vTRH & BTEX in Water						Base II Duplicate II % RPD						
Date extracted	-			25/07/2 012	[NT]	[NT]	LCS-W1	25/07/2012				
Date analysed	-			25/07/2 012	[NT]	[NT]	LCS-W1	25/07/2012				
TRHC6 - C9	µg/L	10	Org-016	<10	[NT]	[NT]	LCS-W1	105%				
Benzene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	105%				
Toluene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	105%				
Ethylbenzene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	103%				
m+p-xylene	µg/L	2	Org-016	2	[NT]	[NT]	LCS-W1	106%				
o-xylene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	106%				
Surrogate Dibromofluoromethane	%		Org-016	135	[NT]	[NT]	LCS-W1	121%				
Surrogate toluene-d8	%		Org-016	100	[NT]	[NT]	LCS-W1	99%				
Surrogate 4-BFB	%		Org-016	90	[NT]	[NT]	LCS-W1	102%				
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery				
sTRH in Water (C10- C36)						Base II Duplicate II % RPD						
Date extracted	-			26/07/2 012	[NT]	[NT]	LCS-W1	26/07/2012				
Date analysed	-			26/07/2 012	[NT]	[NT]	LCS-W1	26/07/2012				
TRHC 10 - C14	µg/L	50	Org-003	<50	[NT]	[NT]	LCS-W1	118%				
TRHC 15 - C28	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	111%				
TRHC29 - C36	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	97%				
Surrogate o-Terphenyl	%		Org-003	99	[NT]	[NT]	LCS-W1	128%				

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Water						Base II Duplicate II % RPD		
Date extracted	-			26/07/2 012	[NT]	[NT]	LCS-W1	26/07/2012
Date analysed	-			26/07/2 012	[NT]	[NT]	LCS-W1	26/07/2012
Naphthalene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	100%
Acenaphthylene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Fluorene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	102%
Phenanthrene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	96%
Anthracene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	107%
Pyrene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	103%
Benzo(a)anthracene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Chrysene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	99%
Benzo(b+k)fluoranthene	µg/L	2	Org-012 subset	2	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	106%
Indeno(1,2,3-c,d)pyrene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012 subset	123	[NT]	[NT]	LCS-W1	102%

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike % Recoverv
HM in water - dissolved					C	Base II Duplicate II % RPD		
Date prepared	-			26/07/2 012	[NT]	[NT]	LCS-W1	26/07/2012
Date analysed	-			27/07/2 012	[NT]	[NT]	LCS-W1	27/07/2012
Arsenic-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	95%
Cadmium-Dissolved	µg/L	0.1	Metals-022 ICP-MS	<0.1	[NT]	[NT]	LCS-W1	99%
Chromium-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	98%
Copper-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	93%
Lead-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	99%
Mercury-Dissolved	µg/L	0.05	Metals-021 CV-AAS	<0.050	[NT]	[NT]	LCS-W1	100%
Nickel-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	93%
Zinc-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	94%
Aluminium-Dissolved	µg/L	10	Metals-022 ICP-MS	<10	[NT]	[NT]	LCS-W1	108%
Cobalt-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	96%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Total Phenolics in Water						Base II Duplicate II % RPD		
Date extracted	-			26/07/2 012	[NT]	[NT]	LCS-W1	26/07/2012
Date analysed	-			26/07/2 012	[NT]	[NT]	LCS-W1	26/07/2012
Total Phenolics (as Phenol)	mg/L	0.05	Inorg-030	<0.05	[NT]	[NT]	LCS-W1	86%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Miscellaneous Inorganics						Base II Duplicate II % RPD		
Date prepared	-			26/07/2 012	[NT]	[NT]	LCS-W1	26/07/2012
Date analysed	-			26/07/2 012	[NT]	[NT]	LCS-W1	26/07/2012
рН	pH Units		Inorg-001	[NT]	[NT]	[NT]	LCS-W1	101%
Total Suspended Solids @ 103-105 ⁰ C	mg/L	5	Inorg-019	⊲5	[NT]	[NT]	LCS-W1	103%
Total Dissolved Solids (grav)	mg/L	5	Inorg-018	<5	[NT]	[NT]	LCS-W1	93%

Report Comments:

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Asbestos ID was analysed by Approved	Paul Ching	
Asbestos ID was authorised by Approve	Paul Ching	
INS: Insufficient sample for this test	PQL: Practical	Quantitation Limit

NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

NA: Test not required

<: Less than

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

>: Greater than

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

RPD: Relative Percent Difference

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batched of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and

speciated phenols is acceptable.

Project N Project N DP Cont Prior Sto	Name: No: act Perso prage:	on: esk	HillView Street Way To: Envirolab Services 4.1561:01 12 Ashley Street 12 Ashley Street Brent Kerry Chatswood NSW Ph: 9910 6200 Ph: 9910 6200 Attn: Sample Reciept													
ample)	Sample Type S-soil W-water	Lab ID	SPACAS	Combination	рH	TIS	TSS	Ana HM	Combination						Notes	
11/1.0	S	1	\sim	X											Samples	Collecter
210.5	Î	2	\overline{X}												hi T	.Th/
2/3.0		3	\overline{X}								\bigcirc	Enviro	lab Services		0 19/	7/12
410.5		4	\times									Chatswoo Ph:/0	d NSW 2067)	
1/1.0		5	\overline{X}					1			Job No:	7649	B			
1/3.0		6	X								Date Rea	eived: 25	7/12		1	
10.1		7	<u> </u>	X							Time Rec Received	elved: 11	00		l 1,	
2 10.1	V V	8		X							Temp:	o/Ambient				
I W	GW	٩			\overline{X}	1	\mathbf{k}	X	X		Security:	In COBroke	n/None		Samoles c	collected l
12 W	Yaw	10'			X	X	×	×	X						TJW 2	3/7/12
	ma/ka		1				T									
iL (W)	mg/L															
≀L = pract ate relinq otal numb esults req	ical quantit uished: er of sam juired by:.	titation limit, *As per Laboratory Method SA 24/7/2 mples in container: <u>8.50</u> & 2. Grown water 1					SAMPL Please receipt Signatu	SAMPLES RECEIVED Please sign and date to acknowledge receipt of samples and return by fax					Send results to: Brent Kerry Douglas Partners Pty Ltd Address: - Unit D, 7 Donaldson Street Unit 5, 3 Texansfer - Unit D, 7 Donaldson Street Unit 5, 3 Texansfer -Wyong North NSW 2259 Tuggeran NSW			
					Bh	m	Date:	.5/7/1	2. Lab Ref:			Email: b	rent.kerry@])douglas	رر partners.co	m.au

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

76498-A

Client: Douglas Partners Tuggerah Unit 5, 3 Teamster Close Tuggerah NSW 2259

Attention: Brent Kerry

Sample log in details:

Your Reference: No. of samples: Date samples received / completed instructions received

41561.01, Hillview St Woy Woy

 Additional Testing on 1 Soil

 25/07/12
 / 15/08/12

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

Date results requested by: / Issue Date:22/08/12/16/08/12Date of Preliminary Report:Not issuedNATA accreditation number 2901. This document shall not be reproduced except in full.Accredited for compliance with ISO/IEC 17025.Tests not covered by NATA are denoted with *.

Results Approved By:

M. Mauffield

Matt Mansfield Approved Signatory

ACCREDITED FOR TECHNICAL COMPETENCE

Chromium Suite		
Our Reference:	UNITS	76498-A-3
Your Reference		102
Depth		3.0
Date Sampled		19/07/2012
Type of sample		Soil
Chromium Poducible Sulfur	96 341 / 341	0.04
Childrin Reducible Sullui	/0 VV / VV	0.04
a-Chromium Reducible Sulfur	moles H ⁺ /t	25
MethodID	Methodology Summary	
-----------	---	
Inorg-068	Chromium Reducible Sulfur - Hydrogen Sulfide is quantified by iodometric titration after distillation to determine potential acidity. Based on Acid Sulfate Soils Laboratory Methods Guidelines, Version 2.1 - June 2004.	

		Clie	nt Referenc	e: 41	561.01, Hillv			
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Chromium Suite						Base II Duplicate II % RPD		
Chromium Reducible Sulfur	%w/w	0.005	Inorg-068	<0.005	[NT]	[NT]	LCS-1	91%
a-Chromium Reducible Sulfur	moles H⁺/t	3	Inorg-068	୍ୟ	[NT]	[NT]	[NR]	[NR]

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this testPQL: Practical Quantitation LimitNA: Test not requiredRPD: Relative Percent Difference<: Less than</td>>: Greater than

NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batched of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

an a	and a start of the	San ann an s San an San San San San San San San San S	Edge
1 de la			~ ~ ~

CHAIN OF CUSTODY DESPATCH SHEET (2)

Project I Project I DP Con Prior Sto	Name: No: tact Perso prage:	on: eśk	/ , / fridge /	' shelved	یر این	1 7 1			To At): tn:	Envirolab Serv 12 Ashley Stre Chatswood NS Ph: 9910 6200 Sample Recie	ices et SW			
	Comple	<u></u>	·			<u></u>	<u> </u>	Ana	lytes						
ample	Type S-soil	Lab ID	Nor									<u> </u>			Notes
	vv-water	3										<u> </u>			And the second
·														<u> </u>	TV Eline
		-	· · · · · · · · · · · · · · · · · · ·	.	_									-	
						. <u></u> , . <u>.</u>									
			<u>.</u>												
	-	-										<u> </u>			
													-		
						<u></u>							<u></u>		
<u>'QL (S)</u>	mg/kg		- <u> </u>												
PQL (vv) mg/L PQL = practical quantitation limit, *As per Laboratory Method Detection Limit Date relinquished: Total number of samples in container: Results required by:			SAMPLES RECEIVED Please sign and date to acknowledge receipt of samples and return by fax Signature:				Send results to: Brent Kerry Douglas Partners Pty Ltd Address: Unit 5, 3 Teamster Close Tuggerah NSW 2259								
Results required by:					Date: 15 8 12 Lab Ref: 764984				Email: brent.kerry@douglaspartners.com.au						